96 research outputs found

    Non-equilibrium hysteresis and spin relaxation in the mixed-anisotropy dipolar coupled spin-glass LiHo0.5_{0.5}Er0.5_{0.5}F4_{4}

    Get PDF
    We present a study of the model spin-glass LiHo0.5_{0.5}Er0.5_{0.5}F4_4 using simultaneous AC susceptibility, magnetization and magnetocaloric effect measurements along with small angle neutron scattering (SANS) at sub-Kelvin temperatures. All measured bulk quantities reveal hysteretic behavior when the field is applied along the crystallographic c axis. Furthermore avalanche-like relaxation is observed in a static field after ramping from the zero-field-cooled state up to 200300200 - 300 Oe. SANS measurements are employed to track the microscopic spin reconfiguration throughout both the hysteresis loop and the related relaxation. Comparing the SANS data to inhomogeneous mean-field calculations performed on a box of one million unit cells provides a real-space picture of the spin configuration. We discover that the avalanche is being driven by released Zeeman energy, which heats the sample and creates positive feedback, continuing the avalanche. The combination of SANS and mean-field simulations reveal that the conventional distribution of cluster sizes is replaced by one with a depletion of intermediate cluster sizes for much of the hysteresis loop.Comment: 6 pages, 4 figure

    Staggered-flux state for rectangular-lattice spin 1/2 Heisenberg antiferromagnet

    Full text link
    We investigate the spin-1/2 Heisenberg model on a rectangular lattice, using the Gutzwiller projected variational wave function known as the staggered flux state. Using Monte Carlo techniques, the variational parameters and static spin-structure factor for different coupling anisotropies γ=Jy/Jx\gamma=J_y/J_x are calculated. We observe a gradual evolution of the ground state energy towards a value which is very close to the 1D estimate provided by the Bethe ansatz and a good agreement between the finite size scaling of the energies. The spin-spin correlation functions exhibit a power-law decay with varying exponents for different anisotropies. Though the lack of N\'eel order makes the staggered flux state energetically unfavorable in the symmetric case γ=1\gamma=1, it appears to capture the essence of the system close to 1D. Hence we believe that the staggered flux state provides an interesting starting point to explore the crossover from quantum disordered chains to the N\'eel ordered 2D square lattices

    Magnetic hour-glass dispersion and its relation to high-temperature superconductivity in iron-tuned Fe1+y_{1+y}Te0.7_{0.7}Se0.3_{0.3}

    Get PDF
    High-temperature superconductivity remains arguably the largest outstanding enigma of condensed matter physics. The discovery of iron-based high-temperature superconductors has renewed the importance of understanding superconductivity in materials susceptible to magnetic order and fluctuations. Intriguingly they show magnetic fluctuations reminiscent of the superconducting (SC) cuprates, including a 'resonance' and an 'hour-glass' shaped dispersion, which provide an opportunity to new insight to the coupling between spin fluctuations and superconductivity. Here we report inelastic neutron scattering data on Fe1+y_{1+y}Te0.7_{0.7}Se0.3_{0.3} using excess iron concentration to tune between a SC (y=0.02y=0.02) and a non-SC (y=0.05y=0.05) ground states. We find incommensurate spectra in both samples but discover that in the one that becomes SC, a constriction towards a commensurate hourglass shape develop well above TcT_c. Conversely a spin-gap and concomitant spectral weight shift happen below TcT_c. Our results imply that the hourglass shaped dispersion is most likely a pre-requisite for superconductivity, whereas the spin-gap and shift of spectral weight are consequences of superconductivity. We explain this observation by pointing out that an inwards dispersion towards the commensurate wave-vector is needed for the opening of a spin gap to lower the magnetic exchange energy and hence provide the necessary condensation energy for the SC state to emerge

    The electronic structure of the high-symmetry perovskite iridate Ba2IrO4

    Get PDF
    We report angle-resolved photoemission (ARPES) measurements, density functional and model tight-binding calculations on Ba2_2IrO4_4 (Ba-214), an antiferromagnetic (TN=230T_N=230 K) insulator. Ba-214 does not exhibit the rotational distortion of the IrO6_6 octahedra that is present in its sister compound Sr2_2IrO4_4 (Sr-214), and is therefore an attractive reference material to study the electronic structure of layered iridates. We find that the band structures of Ba-214 and Sr-214 are qualitatively similar, hinting at the predominant role of the spin-orbit interaction in these materials. Temperature-dependent ARPES data show that the energy gap persists well above TNT_N, and favour a Mott over a Slater scenario for this compound.Comment: 13 pages, 9 figure

    Spin excitations in a single La2_2CuO4_4 layer

    Full text link
    The dynamics of S=1/2 quantum spins on a 2D square lattice lie at the heart of the mystery of the cuprates \cite{Hayden2004,Vignolle2007,Li2010,LeTacon2011,Coldea2001,Headings2010,Braicovich2010}. In bulk cuprates such as \LCO{}, the presence of a weak interlayer coupling stabilizes 3D N\'{e}el order up to high temperatures. In a truly 2D system however, thermal spin fluctuations melt long range order at any finite temperature \cite{Mermin1966}. Further, quantum spin fluctuations transfer magnetic spectral weight out of a well-defined magnon excitation into a magnetic continuum, the nature of which remains controversial \cite{Sandvik2001,Ho2001,Christensen2007,Headings2010}. Here, we measure the spin response of \emph{isolated one-unit-cell thick layers} of \LCO{}. We show that coherent magnons persist even in a single layer of \LCO{} despite the loss of magnetic order, with no evidence for resonating valence bond (RVB)-like spin correlations \cite{Anderson1987,Hsu1990,Christensen2007}. Thus these excitations are well described by linear spin wave theory (LSWT). We also observe a high-energy magnetic continuum in the isotropic magnetic response. This high-energy continuum is not well described by 2 magnon LSWT, or indeed any existing theories.Comment: Revised version to appear in Nature Materials; 6 pages,4 figure

    Spin-Orbit-Induced Orbital Excitations in Sr2RuO4 and Ca2RuO4: A Resonant Inelastic X-ray Scattering Study

    Get PDF
    High-resolution resonant inelastic X-ray scattering (RIXS) at the oxygen K-edge has been used to study the orbital excitations of Ca2RuO4 and Sr2RuO4. In combination with linear dichroism X-ray absorption spectroscopy, the ruthenium 4d-orbital occupation and excitations were probed through their hybridization with the oxygen p-orbitals. These results are described within a minimal model, taking into account crystal field splitting and a spin-orbit coupling \lambda_{so}=200~meV. The effects of spin-orbit interaction on the electronic structure and implications for the Mott and superconducting ground states of (Ca,Sr)2RuO4 are discussed.Comment: accepted in PRB 201

    Measurement of magnetic excitations in the two-dimensional antiferromagnetic Sr2CuO2Cl2 insulator using resonant x-ray scattering:Evidence for extended interactions

    Get PDF
    Using high-resolution resonant inelastic x-ray scattering (RIXS), we performed a momentum-resolved study of magnetic excitations in the model spin-1/2 2D antiferromagnetic insulator Sr_2CuCl_2O_2. We identify both a single-spin-wave feature and a multi-magnon continuum, and show that the X-ray polarization can be used to distinguish these two contributions in the cross-section. The spin-waves display a large (70 meV) dispersion between the zone-boundary points (π\pi,0) and (π\pi/2,π\pi/2). Employing an extended tt-tt'-t"t"-UU one-band Hubbard model, we find significant electronic hopping beyond nearest-neighbor Cu ions. We conclude that sizeable extended magnetic interactions are present in \scoc{} and probably important in all undoped cuprates.Comment: 4 pages, 4 figure

    Quantum and thermal ionic motion, oxygen isotope effect, and superexchange distribution in La<sub>2</sub>CuO<sub>4</sub>

    Get PDF
    We study the zero-point and thermal ionic motion in La2_2CuO4_4 by means of high-resolution neutron diffraction experiments. Our results demonstrate anisotropic motion of O and to a lesser extent of Cu ions, both consistent with the structure of coupled CuO6_6 octahedra, and quantify the relative effects of zero-point and thermal contributions to ionic motion. By substitution of 18^{18}O, we find that the oxygen isotope effect on the lattice dimensions is small and negative (0.01%-0.01\%), while the isotope effect on the ionic displacement parameters is significant (6-6 to 50%50\%). We use our results as input for theoretical estimates of the distribution of magnetic interaction parameters, JJ, in an effective one-band model for the cuprate plane. We find that ionic motion causes only small (1%1\%) effects on the average value J\langle J\rangle, which vary with temperature and O isotope, but results in dramatic (1010-20%20\%) fluctuations in JJ values that are subject to significant (88-12%12\%) isotope effects. We demonstrate that this motional broadening of JJ can have substantial effects on certain electronic and magnetic properties in cuprates.Comment: 13 pages, 9 figure

    Phase diagram with an enhanced spin-glass region of the mixed Ising-<em>XY</em> magnet LiHo<sub><em>x</em></sub>Er<sub>1<em>-x</em></sub>F<sub>4</sub>

    Get PDF
    We present the experimental phase diagram of LiHoxEr1 xF4, a dilution series of dipolar coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagnet LiErF4 have been identified. Below x 0.86, an embedded spin glass phase is observed, where a spin glass exists within the ferromagnetic structure. Below x 0.57, an Ising spin glass is observed consisting of frozen needlelike clusters. For x amp; 8764; 0.3 0.1, an antiferromagnetically coupled spin glass occurs. A reduction of TC x for the ferromagnet is observed which disobeys the mean field predictions that worked for LiHoxY1 xF4
    corecore